首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
物理学   3篇
  2005年   3篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 187 毫秒
1
1.
Effect of ultrastructural changes on the toughness of bone   总被引:3,自引:0,他引:3  
The ultrastructure of bone can be considered as a conjunction between the biology and the biomechanics of the tissue. It is the result of cellular and molecular activities of bone formation, and its organization dominates the mechanical behavior of bone. Following this perspective, the objective of this review is to provide a current understanding of bone ultrastructure and its relationships with the toughness of the tissue. Therefore, we first provide a discussion on the organization of bone constituents, namely collagen, mineral, and water. Then, we present evidence on how the toughness of bone relates to its ultrastructure through the formation of microdamage. In addition, attention is given to how damage accumulation serves as a toughening mechanism. Finally, we describe how changes in the ultrastructure-caused by osteogenesis imperfecta, gamma irradiation, fluoride treatment, and aging affect the toughness and competence of bone.  相似文献   
2.
At the ultrastructural level alkaline phosphatase has been studied in calcifying cartilage but not in bone. The aim of this study was to assess if there is an osteoblast dysfunction in Osteogenesis Imperfecta (OI) with respect to alkaline phosphatase activity. Specimens from three OI type II foetal femoral bones, two OI type II growth plates, one normal foetal femoral bone and growth plate, one OI type III femoral bone specimen and one normal juvenile bone specimens were examined using modified lead nitrate method to identify alkaline phosphatase reactivity. The electron dense reaction product (indicative of the presence of alkaline phosphatase) was demonstrable on the cell membrane of the osteoblasts, as focal concentrations in the collagen osteoid and on the mineralisation front of normal bone. In normal bone the intensity of the reaction seemed to be stronger than in OI bone and appeared as a continuous black line along the osteoblast cell membranes. In OI bone the reaction product only appeared as a few electron dense beads along the osteoblast cell membrane.

There appeared to be reduced and diffuse reaction product on OI osteoblasts, thus implying either a reduced level and/or altered activity of alkaline phosphatase and hence a dysfunction of osteoblasts. This confirms the findings of the previous report of the impaired activity of alkaline phosphatase in OI osteoblasts. Even in the OI growth plate, hypertrophic chondrocytes showed less intense reaction product than the chondrocytes in the normal growth plate.

The normal human growth plates used in this study showed a similar pattern, but in the OI growth plate even the hypertrophic zone, where the alkaline phosphatase activity is reported to be high, showed less intense reaction product. Biochemical reports indicate that alkaline phosphatase levels are normal in cultured OI cell lines, yet ultrastructural histochemical observations reported here, show reduced enzyme localisation and this may suggest reduced amounts of protein or reduced activity at the tissue level.  相似文献   

3.
高氟铝和铝引起低龄鸡骨发育不全   总被引:1,自引:1,他引:0  
进行了高氟铝和铝对低龄鸡骨损害的实验。57日龄鸡96只随机分为8组,毒物加进饲料,实验期3个月。结果表明,各高氟、高氟铝组骨氟均数倍于对照组,低铝组骨氟显著升高;单饲NaF组骨铝增高近3倍,高氟铝组骨氟比NaF组和病区玉米组低1/3以上,骨铝低约50%;单饲铝达对照4~21倍的骨铝与对照组接近。饲氟与骨氟r=0.77,与骨铝r=0.65;饲铝与骨铝r=-0.46,与骨氟r=-0.53;骨氟与骨铝r  相似文献   
4.
Osteogenesis Imperfecta (OI) is a heterogeneous, inherited bone disorder usually resulting from a defect in collagen synthesis or function. The Sillence classification recognises four OI subtypes of which type III is the severe, progressively deforming form. Here, we report distinctive ultrastructural abnormalities of bone osteoid collagen fibrils from three patients with OI type III and compared with normal controls. Collagen biochemistry of these patients showed normal alpha1(I) and alpha2(I) chains, despite the structurally abnormal collagen fibrils.

The expected lamellar organisation of normal osteoid was absent in the bone biopsies of these patients. In addition their collagen fibrils had frayed edges and no periodicity was observed in most of these fibrils. These collagen fibrils were also flower like, twisted, spiralled and sparsely distributed throughout a very thick osteoid with patchy mineralisation.

These structurally abnormal collagens may not be able to provide the nucleating and scaffolding sites for normal mineralisation and may lead to the bone fragility observed in OI.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号